GraphNorm:

A Principled Approach to Accelerating Graph Neural Network Training

ICML 2021

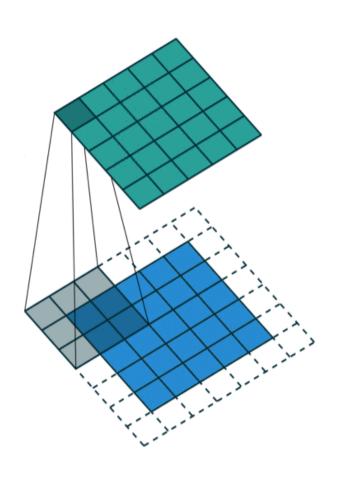
Tianle Cai*, Shengjie Luo*, Keyulu Xu, Di He, Tie-Yan Liu, Liwei Wang

中 关 村 | 海 华 | 信 息 技 术 前 沿 研 究 院 Haihua Institute For Frontier Information Technology

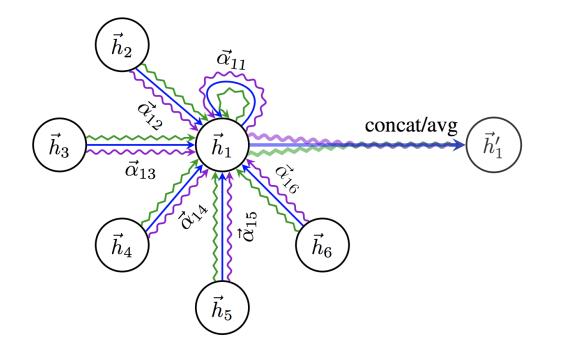
Learning with graph – a general form of data

Drug Discovery

(phys.org)

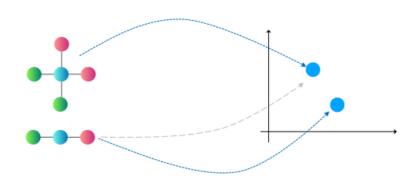

Social Networks

(acwits)


Knowledge Graph

(yashuseth.blog)

Graph Neural Networks **Neighborhood Aggregation** a.k.a. Message Passing or Graph Convolution


Aggregate neighbor features with permutation invariance functions

Graph Neural Networks **Neighborhood Aggregation** $h_i^{(k)} = AGGREGATE^{(k)} \left(h_i^{(k-1)}, \left\{ h_j^{(k-1)}: v_j \in \mathcal{N}(v_i) \right\} \right)$ Feature of node v_i in layer k-1. Example -- GIN $h_i^{(k)} = MLP^{(k)}\left(\left(1 + \epsilon^{(k)}\right) \cdot h_i^{(k-1)} + \sum_{j \in \mathcal{N}(v_i)} h_j^{(k-1)}\right)$ $\epsilon^{(k)}$ is a learnable parameter **Readout Function** $h_G = READOUT(\{h_i^{(K)} | v_i \in V\})$ \cap k=1Determine node Propagate and transform information computation graph

Investigations on Graph Neural Network

Expressive Power

Which graphs can a GNN distinguish?

Reasoning

Reasoning tasks as dynamic programming (DP):

graph algorithms

visual question answering

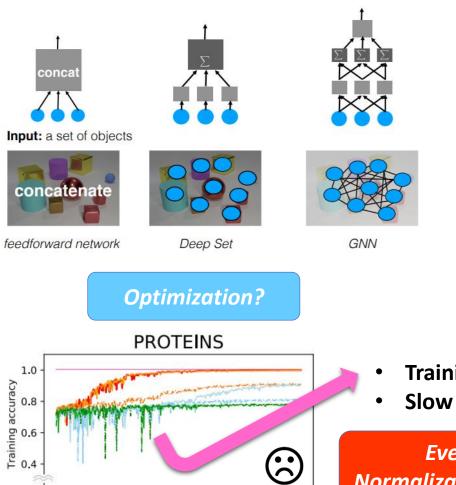
Intuitive physics

0

0

100

50

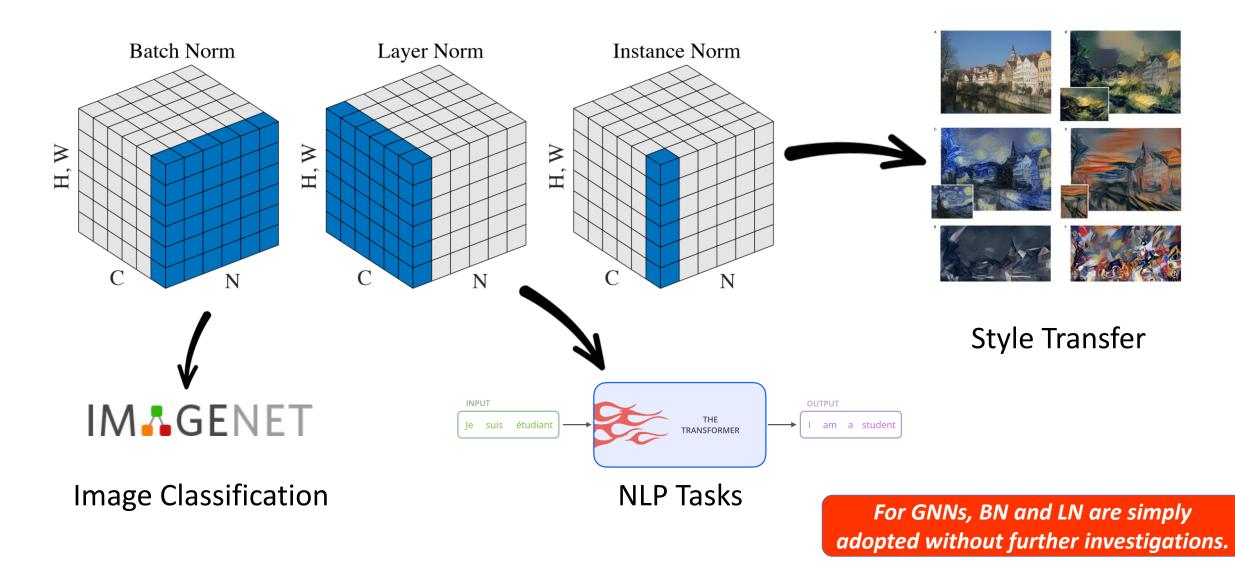

150 200

Epoch

250

300 350

Generalization



• Training instability

• Slow convergence

Even with Normalization methods.

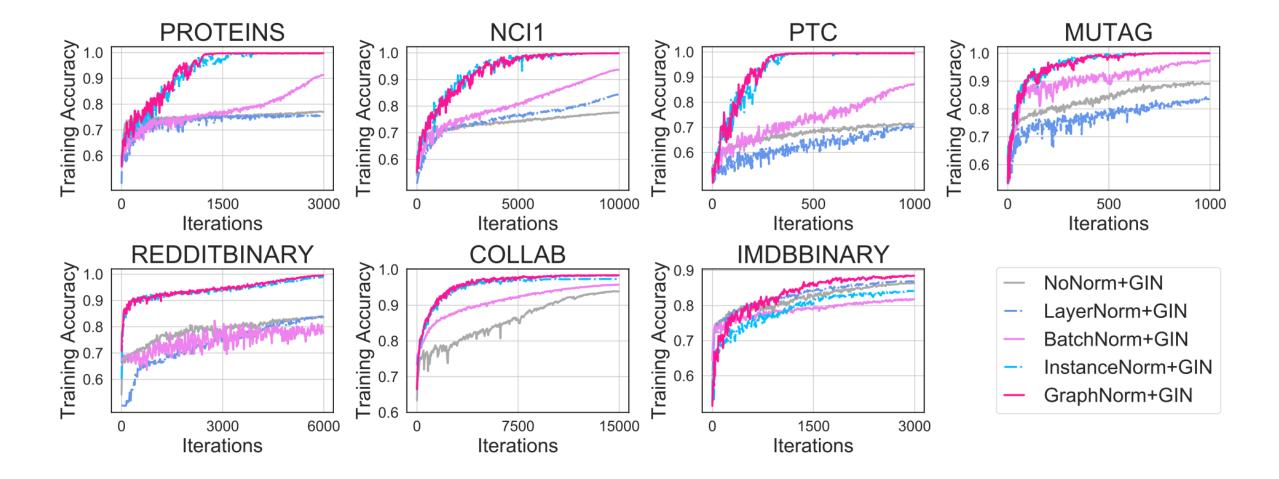
Normalization for Neural Networks

What normalization methods are effective for Graph Neural Networks?

This paper

Adapting and evaluating existing normalization methods to GNNs.

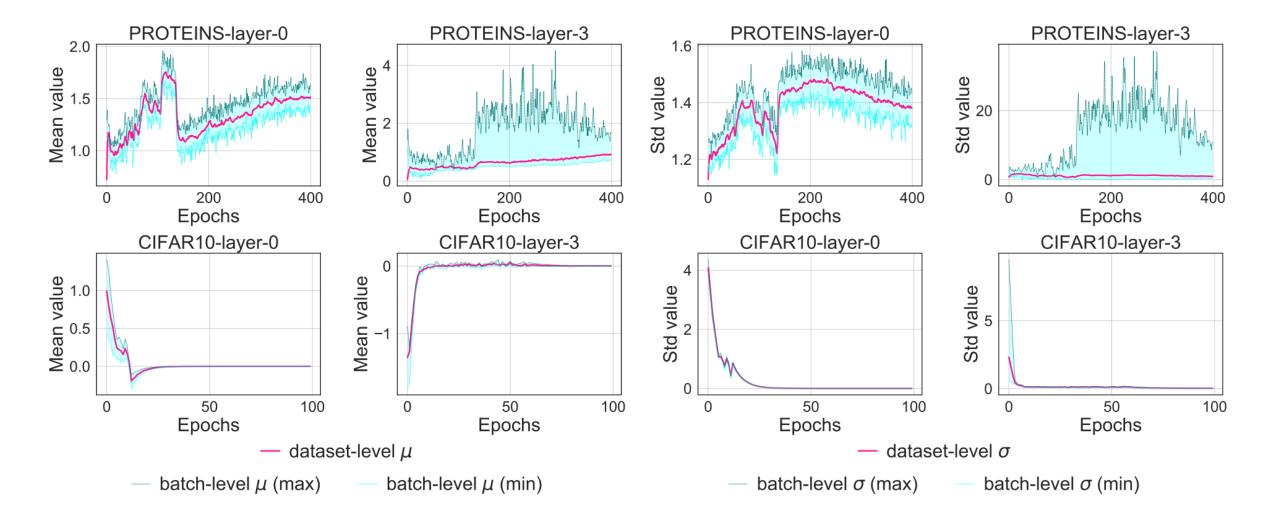
Explaining the effectiveness of InstanceNorm over BatchNorm.



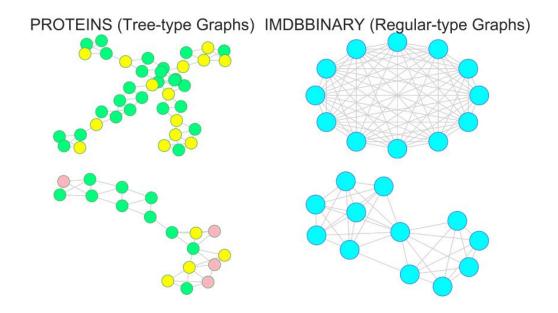
Identifying an expressiveness degradation of InstanceNorm.

Proposing GraphNorm which addresses the issue and converges faster.

Evaluation of existing normalization methods


Preconditioning effect of InstanceNorm

Theorem 3.1 (Shift Serves as a Preconditioner of Q). Let Q, N be defined as in Eq. (6), $0 \le \lambda_1 \le \cdots \le \lambda_n$ be the singular values of Q. We have $\mu_n = 0$ is one of the singular values of QN, and let other singular values of QN be $0 \le \mu_1 \le \mu_2 \le \cdots \le \mu_{n-1}$. Then we have


$$\lambda_1 \le \mu_1 \le \lambda_2 \le \dots \le \lambda_{n-1} \le \mu_{n-1} \le \lambda_n, \quad (7)$$

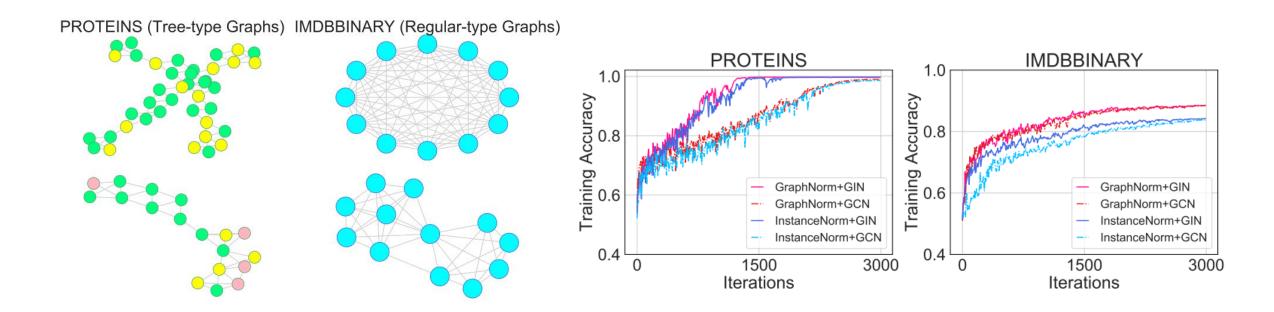
where $\lambda_i = \mu_i$ or $\lambda_i = \mu_{i-1}$ only if there exists one of the right singular vectors α_i of Q associated with λ_i satisfying $\mathbf{1}^{\top} \alpha_i = 0$.

Heavy batch noise in graphs

Expressiveness degradation of InstanceNorm

Proposition 4.1. For a r-regular graph with one-hot encodings as its features described above, we have for GIN, Norm $(W^{(1)}H^{(0)}Q_{\text{GIN}}) = S(W^{(1)}H^{(0)}Q_{\text{GIN}})N = 0$, i.e., the output of normalization layer is a zero matrix without any information of the graph structure.

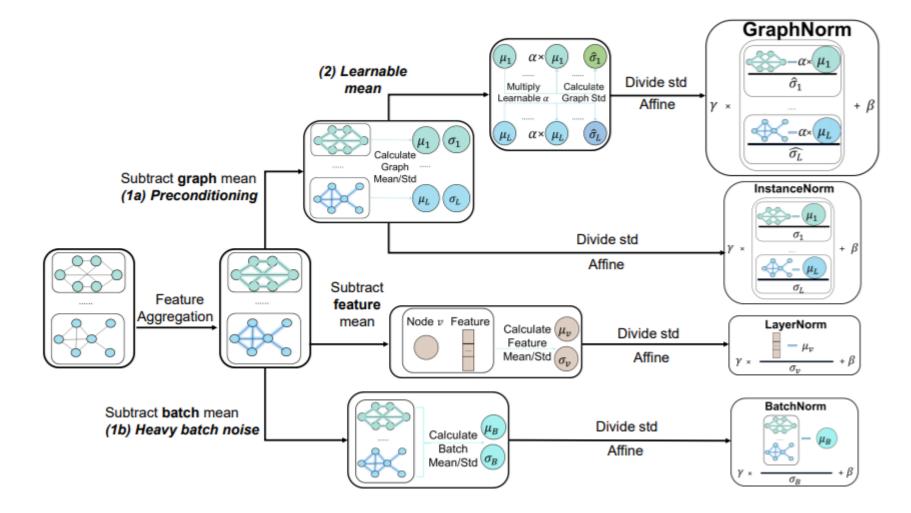
Proposition 4.2. For a complete graph (r = n - 1), we have for GIN, $Q_{\text{GIN}}N = \xi^{(k)}N$, i.e., graph structural information in Q will be removed after multiplying N.


Proposed method: GraphNorm

Key: learnable parameter to control how much information we need to keep in the mean

GraphNorm
$$(\hat{h}_{i,j}) = \gamma_j \cdot \frac{\hat{h}_{i,j} - \alpha_j \cdot \mu_j}{\hat{\sigma}_j} + \beta_j,$$

- Inheriting the merit of InstanceNorm
- Solving the expressiveness degradation problem


GraphNorm addresses the issue of InstanceNorm

GraphNorm achieves good performance

Detects	MUTAC	DTC	DDOTEINS	NCU			COLLAD	Table 2. Test perfo	Table 2. Test performance on OGB.	
Datasets # graphs	MUTAG 188	PTC 344	PROTEINS 1113	NCI1 4110	IMDB-B 1000	RDT-B 2000	COLLAB 5000	Datasets # graphs	Ogbg-molhiv 41,127	
# classes	2	2	2	2	2	2	2	# classes	2	
Avg # nodes	17.9	25.5	39.1	29.8	19.8	429.6	74.5	Avg # nodes	25.5	
WL SUBTREE (SHERVASHIDZE ET AL., 2011)	90.4 ± 5.7	59.9 ± 4.3	75.0 ± 3.1	86.0 ± 1.8	73.8 ± 3.9	81.0 ± 3.1	78.9 ± 1.9	GCN (Hu et al., 2020) GIN (Hu et al., 2020)	$\begin{array}{c} 76.06 \pm 0.97 \\ 75.58 \pm 1.40 \end{array}$	
DCNN (ATWOOD & TOWSLEY, 2016)	67.0	56.6	61.3	62.6	49.1	-	52.1	GCN+LayerNorm	75.04 ± 0.48	
DGCNN (ZHANG ET AL., 2018)	85.8	58.6	75.5	74.4	70.0	-	73.7	GCN+BatchNorm	76.22 ± 0.95	
AWL (IVANOV & BURNAEV, 2018)	87.9 ± 9.8	-	-	-	74.5 ± 5.9	87.9 ± 2.5	73.9 ± 1.9	GCN+InstanceNorm	78.18 ± 0.42	
GIN+LayerNorm	82.4 ± 6.4	62.8 ± 9.3	76.2 ± 3.0	$78.3 \pm 1,7$	$74.5 \pm 4,4$	82.8 ± 7.7	80.1 ± 0.8 80.2 ± 1.9 80.0 ± 2.1	GCN+GraphNorm	$\textbf{78.30} \pm \textbf{0.69}$	
GIN+BATCHNORM ((XU ET AL., 2019))	89.4 ± 5.6	64.6 ± 7.0	76.2 ± 2.8	82.7 ± 1.7	75.1 ± 5.1	92.4 ± 2.5		GIN+LayerNorm GIN+BatchNorm	$\begin{array}{c} 74.79 \pm 0.92 \\ 76.61 \pm 0.97 \\ 77.54 \pm 1.27 \\ \textbf{77.73} \pm \textbf{1.29} \end{array}$	
GIN+INSTANCENORM	90.5 ± 7.8	64.7 ± 5.9	76.5 ± 3.9	81.2 ± 1.8	74.8 ± 5.0	93.2 ± 1.7		GIN+BatchNorm GIN+InstanceNorm		
GIN+GraphNorm	$\textbf{91.6} \pm \textbf{6.5}$	$\textbf{64.9} \pm \textbf{7.5}$	$\textbf{77.4} \pm \textbf{4.9}$	81.4 ± 2.4	$\textbf{76.0} \pm \textbf{3.7}$	$\textbf{93.5} \pm \textbf{2.1}$	$\textbf{80.2} \pm \textbf{1.0}$	1.0 GIN+GraphNorm		

Thank you:)

