## GraphNorm:

### A Principled Approach to Accelerating Graph Neural Network Training

### ICML 2021

Tianle Cai\*, Shengjie Luo\*, Keyulu Xu, Di He, Tie-Yan Liu, Liwei Wang









中 关 村 | 海 华 | 信 息 技 术 前 沿 研 究 院 Haihua Institute For Frontier Information Technology



### Learning with graph – a general form of data



### **Drug Discovery**

(phys.org)

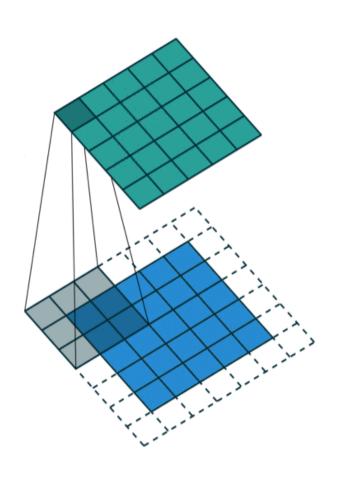
#### **Social Networks**

(acwits)

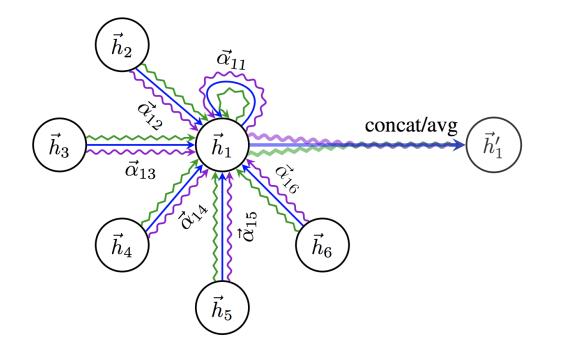
### **Knowledge Graph**

(yashuseth.blog)

### Graph Neural Networks **Neighborhood Aggregation** a.k.a. Message Passing or Graph Convolution



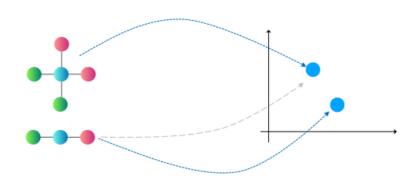
Aggregate neighbor features with permutation invariance functions



Graph Neural Networks **Neighborhood Aggregation**  $h_i^{(k)} = AGGREGATE^{(k)} \left( h_i^{(k-1)}, \left\{ h_j^{(k-1)}: v_j \in \mathcal{N}(v_i) \right\} \right)$ Feature of node  $v_i$  in layer k-1. Example -- GIN  $h_i^{(k)} = MLP^{(k)}\left(\left(1 + \epsilon^{(k)}\right) \cdot h_i^{(k-1)} + \sum_{j \in \mathcal{N}(v_i)} h_j^{(k-1)}\right)$  $\epsilon^{(k)}$  is a learnable parameter **Readout Function**  $h_G = READOUT(\{h_i^{(K)} | v_i \in V\})$  $\cap$ k=1Determine node Propagate and transform information computation graph

### Investigations on Graph Neural Network

Expressive Power



Which graphs can a GNN distinguish?

Reasoning

Reasoning tasks as dynamic programming (DP):



graph algorithms



visual question answering



Intuitive physics

0

0

100

50

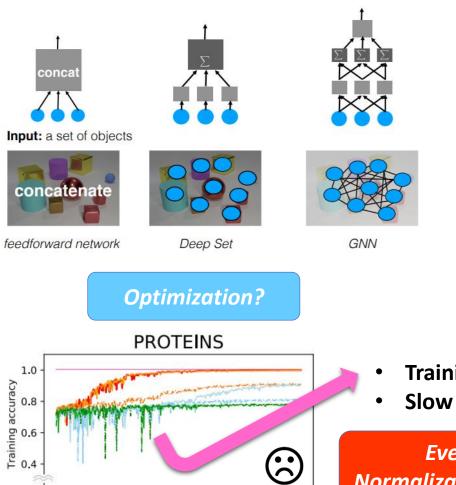
150 200

Epoch

250

300 350

Generalization

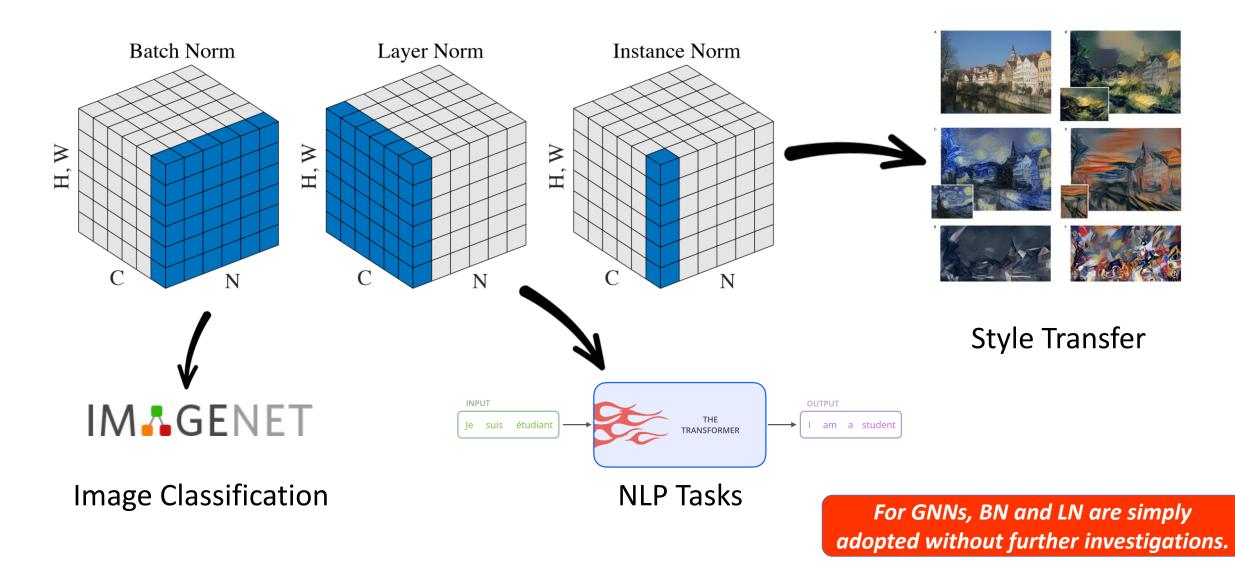


• Training instability

• Slow convergence

Even with Normalization methods.

### Normalization for Neural Networks



# What normalization methods are effective for Graph Neural Networks?



### This paper



Adapting and evaluating existing normalization methods to GNNs.



Explaining the effectiveness of InstanceNorm over BatchNorm.

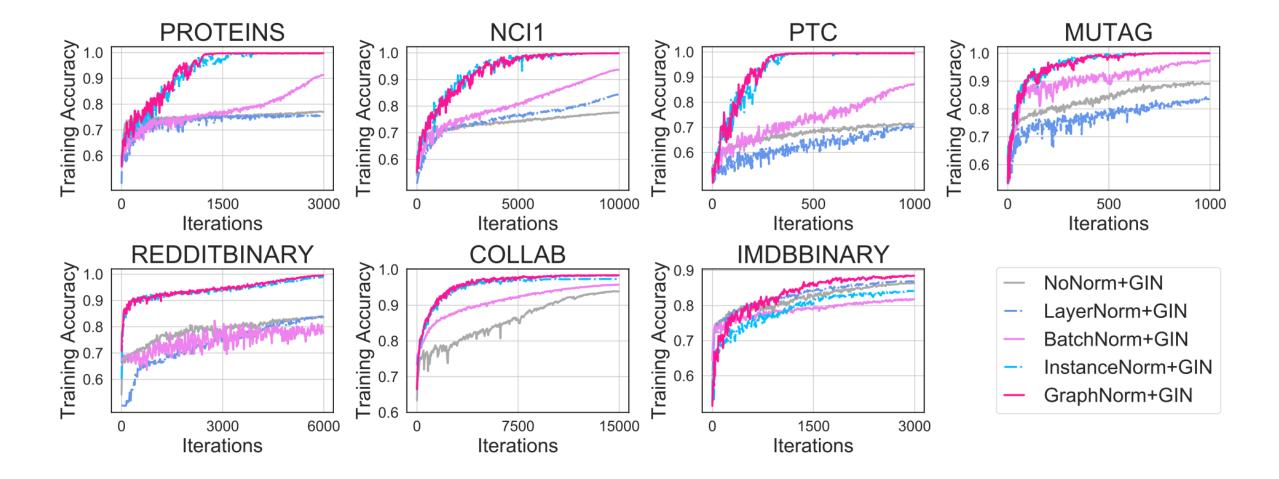


Identifying an expressiveness degradation of InstanceNorm.



Proposing GraphNorm which addresses the issue and converges faster.

### Evaluation of existing normalization methods



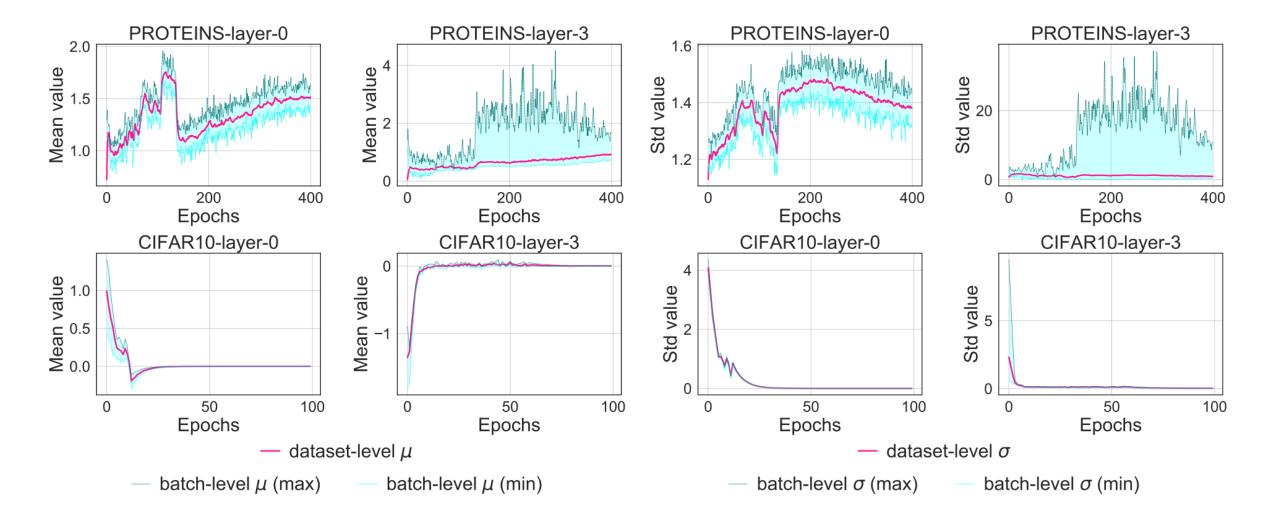
### Preconditioning effect of InstanceNorm

**Theorem 3.1** (Shift Serves as a Preconditioner of Q). Let Q, N be defined as in Eq. (6),  $0 \le \lambda_1 \le \cdots \le \lambda_n$  be the singular values of Q. We have  $\mu_n = 0$  is one of the singular values of QN, and let other singular values of QN be  $0 \le \mu_1 \le \mu_2 \le \cdots \le \mu_{n-1}$ . Then we have

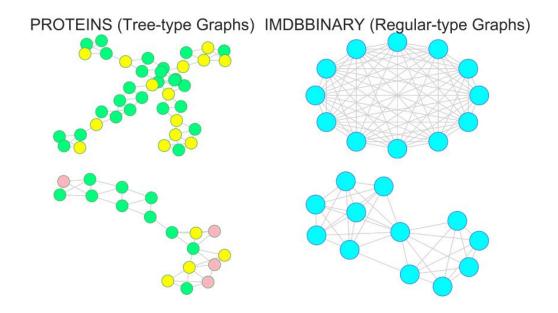
$$\lambda_1 \le \mu_1 \le \lambda_2 \le \dots \le \lambda_{n-1} \le \mu_{n-1} \le \lambda_n, \quad (7)$$

where  $\lambda_i = \mu_i$  or  $\lambda_i = \mu_{i-1}$  only if there exists one of the right singular vectors  $\alpha_i$  of Q associated with  $\lambda_i$  satisfying  $\mathbf{1}^{\top} \alpha_i = 0$ .

### Heavy batch noise in graphs



### Expressiveness degradation of InstanceNorm



**Proposition 4.1.** For a r-regular graph with one-hot encodings as its features described above, we have for GIN, Norm  $(W^{(1)}H^{(0)}Q_{\text{GIN}}) = S(W^{(1)}H^{(0)}Q_{\text{GIN}})N = 0$ , i.e., the output of normalization layer is a zero matrix without any information of the graph structure.

**Proposition 4.2.** For a complete graph (r = n - 1), we have for GIN,  $Q_{\text{GIN}}N = \xi^{(k)}N$ , i.e., graph structural information in Q will be removed after multiplying N.

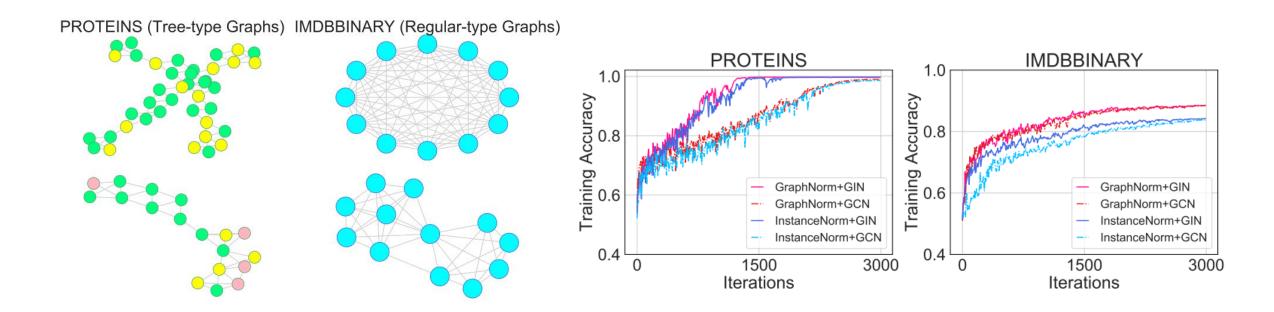
## Proposed method: GraphNorm

Key: learnable parameter to control how much information we need to keep in the mean

GraphNorm 
$$(\hat{h}_{i,j}) = \gamma_j \cdot \frac{\hat{h}_{i,j} - \alpha_j \cdot \mu_j}{\hat{\sigma}_j} + \beta_j,$$

- Inheriting the merit of InstanceNorm
- Solving the expressiveness degradation problem

### GraphNorm addresses the issue of InstanceNorm



### GraphNorm achieves good performance

| Detects                                | MUTAC                            | DTC                              | DDOTEINS                         | NCU            |                                  |                                  | COLLAD                                             | Table 2. Test perfo                            | Table 2. Test performance on OGB.                                                                                     |  |
|----------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| Datasets<br># graphs                   | MUTAG<br>188                     | PTC<br>344                       | PROTEINS<br>1113                 | NCI1<br>4110   | IMDB-B<br>1000                   | RDT-B<br>2000                    | COLLAB<br>5000                                     | Datasets<br># graphs                           | Ogbg-molhiv<br>41,127                                                                                                 |  |
| # classes                              | 2                                | 2                                | 2                                | 2              | 2                                | 2                                | 2                                                  | # classes                                      | 2                                                                                                                     |  |
| Avg # nodes                            | 17.9                             | 25.5                             | 39.1                             | 29.8           | 19.8                             | 429.6                            | 74.5                                               | Avg # nodes                                    | 25.5                                                                                                                  |  |
| WL SUBTREE (SHERVASHIDZE ET AL., 2011) | $90.4 \pm 5.7$                   | 59.9 ± 4.3                       | $75.0 \pm 3.1$                   | 86.0 ± 1.8     | 73.8 ± 3.9                       | 81.0 ± 3.1                       | $78.9 \pm 1.9$                                     | GCN (Hu et al., 2020)<br>GIN (Hu et al., 2020) | $\begin{array}{c} 76.06 \pm 0.97 \\ 75.58 \pm 1.40 \end{array}$                                                       |  |
| DCNN (ATWOOD & TOWSLEY, 2016)          | 67.0                             | 56.6                             | 61.3                             | 62.6           | 49.1                             | -                                | 52.1                                               | GCN+LayerNorm                                  | $75.04 \pm 0.48$                                                                                                      |  |
| DGCNN (ZHANG ET AL., 2018)             | 85.8                             | 58.6                             | 75.5                             | 74.4           | 70.0                             | -                                | 73.7                                               | GCN+BatchNorm                                  | $76.22\pm0.95$                                                                                                        |  |
| AWL (IVANOV & BURNAEV, 2018)           | $87.9\pm9.8$                     | -                                | -                                | -              | $74.5\pm5.9$                     | $87.9\pm2.5$                     | $73.9\pm1.9$                                       | GCN+InstanceNorm                               | $78.18\pm0.42$                                                                                                        |  |
| GIN+LayerNorm                          | $82.4\pm6.4$                     | $62.8\pm9.3$                     | $76.2\pm3.0$                     | $78.3 \pm 1,7$ | $74.5 \pm 4,4$                   | $82.8\pm7.7$                     | $80.1 \pm 0.8$<br>$80.2 \pm 1.9$<br>$80.0 \pm 2.1$ | GCN+GraphNorm                                  | $\textbf{78.30} \pm \textbf{0.69}$                                                                                    |  |
| GIN+BATCHNORM ((XU ET AL., 2019))      | $89.4\pm5.6$                     | $64.6\pm7.0$                     | $76.2\pm2.8$                     | $82.7\pm1.7$   | $75.1\pm5.1$                     | $92.4\pm2.5$                     |                                                    | GIN+LayerNorm<br>GIN+BatchNorm                 | $\begin{array}{c} 74.79 \pm 0.92 \\ 76.61 \pm 0.97 \\ 77.54 \pm 1.27 \\ \textbf{77.73} \pm \textbf{1.29} \end{array}$ |  |
| GIN+INSTANCENORM                       | $90.5\pm7.8$                     | $64.7\pm5.9$                     | $76.5\pm3.9$                     | $81.2\pm1.8$   | $74.8\pm5.0$                     | $93.2\pm1.7$                     |                                                    | GIN+BatchNorm<br>GIN+InstanceNorm              |                                                                                                                       |  |
| GIN+GraphNorm                          | $\textbf{91.6} \pm \textbf{6.5}$ | $\textbf{64.9} \pm \textbf{7.5}$ | $\textbf{77.4} \pm \textbf{4.9}$ | $81.4\pm2.4$   | $\textbf{76.0} \pm \textbf{3.7}$ | $\textbf{93.5} \pm \textbf{2.1}$ | $\textbf{80.2} \pm \textbf{1.0}$                   | 1.0 GIN+GraphNorm                              |                                                                                                                       |  |

# Thank you:)

