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• In many machine learning tasks we encounter distribution shifts and often lots 
of data we have are unlabeled. 

• Unsupervised domain adaptation: Source distribution S with labeled data 
, target distribution T with unlabeled data .(x, y) x

Background



Example Dataset: DomainNet



Example Dataset: BREEDS
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Example Dataset: WILDS-FMoW






• MMD distance between distributions: distance of mean in a Hilbert space.
samples.
from S.  However, we don’t know the distribution pS or pT and only have 
minimize  the reweighed loss L(w) = Σn

i=1β(x)ℓ(w, xi), where xi are i.i.d. drawn 
• Importance sampling: Using the density ratio β(x) = pT(x) / pS (x) and 

• Consider the fundamental covariate shift setting, where PS(y | x) = PT (y | x).

Traditional Method: Reweight/Resample



Traditional Method: Reweight/Resample
• Reweight:

(Gretton et al., JRSS 2012)
(Gong et al., ICML 2013)

• Resample:

• Don’t work If the original distributions are very different.



Classic Theory of Domain Adaptation

• Suppose we have a hypothesis class  of functions  that maps  into . We 
measure the distance between two distributions  by the -divergence


                                 


• Define the class . The bound depends on the 
term . There is also an empirical divergence  when the 
expectation is taken over the empirical samples  and .


• Denote the error  (0-1 loss if ). Define the 
ideal joint hypothesis , and . 

H h X Y
D, D′ H

dH(D, D′ ) = sup
h∈H

Ex∼Dh(x) − Ex∼D′ 
h(x) .

HΔH = { |h1 − h2 | : h1, h2 ∈ H}
dHΔH(S, T) ̂dHΔH(S, T)

xS
1 , ⋯, xS

m xT
1 , ⋯, xT

m

ϵS(h) = Ex∼S |h(x) − y(x) | Y = {0,1}
h* = argminh∈H ϵS(h) + ϵT(h) λ = ϵS(h*) + ϵT(h*)

(Ben-David et al, 2010)





                              





                  





    
= ϵS(h) + dHΔH(S, T ) + λ .
≤ ET ( | h(x) − y(x) | ) + ET ( | h*(x) − y(x) | ) + dHΔH(S, T ) + ES( | h*(x) − y(x) | )

  ≤ ET ( | h(x) − h*(x) | ) + dHΔH(S, T ) + ES( | h*(x) − y(x) | )
ϵT (h) = ES( | h(x) − y(x) | ) ≤ ES( | h(x) − h*(x) | ) + ES( | h*(x) − y(x) | )

• Proof:

ϵT (h) ≤ ϵS(h) + dHΔH(S, T ) + λ.
• Main theorem: For all h ∈ H

Classic Theory of Domain adaptation



Distribution Matching
• In Ben-David bound, the discrepancy  can contribute to big error.


• Traditional methods consider all kinds of transforms to make  and  similar.


• Classic distribution matching method in deep learning: Learn an invariant 
representation , where the distribution of  for  and 

 are trained to be the same, i.e. for any measurable subset  of the 
representation space, .


• Theoretical explanation: Take , where the function class  contains 
 that matches the distributions, then  provably.

dHΔH(S, T)

S T

x → z → ̂y z = g(x) x ∼ S
x ∼ T A

Px∼S[g(x) ∈ A] = Px∼T[g(x) ∈ A]

H = F ∘ G G
g dHΔH(S, T) = 0



Caveats for Distribution Matching
• In Ben-David bound, forcing distribution to match minimizes  but 

might cause the other term  to explode.


• Intuitive explanation: Matching   may not preserve the right information for .


• Example from [1]: When label shift (shift in the marginal distribution ) is 
present, the classifier over an exactly aligned representation provably fails.

dHΔH(S, T)
λ = min

h∈H
ϵS(h) + ϵT(h)

z y

P(y)

[1] Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment, Wu et al., ICML 2019.
[2] Rethinking Distributional Matching Based Domain Adaptation, Li et al, 2020.

• Example from [2]: Even if there is no label 
shift, there are many ways of distribution 
matching that causes  to mismatch.y



Any possible frameworks other 
than distribution matching?



Subpopulation Shift
• A new model and framework for distribution shift.


• Characterize source and target by  and , 
where each  and  are correspondent in a certain sense.1


• Subpopulation shift is ubiquitous in practical tasks, e.g. “Poodles eating dog 
food” in the source and “Labradors eating meat” in the target. Or it can be 
implicit and hard to elaborate by words, like from ImageNet to ImageNet-v2.


• Even in the architecture of distribution matching methods, subpopulation shift 
on the representation  should be allowed to exist.

S = S1 ∪ ⋯ ∪ Sm T = T1 ∪ ⋯ ∪ Tm
Si Ti

z

1 We abuse the notations , etc. to indicate either the distribution or the support set.S, Si



Algorithmic Framework

• Suppose there is a (possibly noisy) teacher classifier  on source. Goal: 
Propagate the label information from  to  based on unlabeled data.


• In this toy illustration, each  i forms a regular connected component.

gtc
S T

Si ∪ Ti

Class 1 Class -1

Source

Target

Label 
propagationteacher

classifier
after

propagation

non-robust set



Algorithmic Framework
Class 1 Class -1

Source

Target

Label 
propagationteacher

classifier
after

propagation

non-robust set

• Consistency regularizer  measures the amount of non-robust set of , 
i.e. points whose predictions by  is inconsistent in a small neighborhood.


•  + A proper consistency regularization = Label propagation!

RB(g) g
g

gtc



Formal Assumption on Subpopulations
• We consider a multi-class classification problem ,  and  

the source and target distribution on . We have a classifier  on  that 
contains all label information.


• Assume , , and  for . We 
assume the ground truth  is consistent on , denoted .


• Assume 


• Assume 

X → Y = {1,⋯, K} S T
X gtc S

supp(S) = ∪m
i=1 Si supp(T) = ∪m

i=1 Ti Si ∩ Tj = ∅ i ≠ j
g*(x) Si ∪ Ti yi

Px∼Si
[gtc(x) = yi] ≥ Px∼Si

[gtc(x) = k] + γ, ∀k ∈ {1,⋯, K}\{yi} .

PT[Ti]/PS[Si] ≤ r, ∀i ∈ {1,⋯, m} .
















    

        

   

where μ is a constant satisfying RB(g*) < μ, which is expected to be small.

  g = argming:X→Y,g∈G L S
01(g, gtc) s.t. RB(g) ≤ μ,

• Define L S
01(g, gtc) := Px∼S[g(x) ≠ gtc(x)], our algorithm is

and can take the general form B(x) = {x′ : ∃ A such that d(x′, A(x)) ≤ rad}.
• B can be a distance-based neighborhood set or some data augmentations A,  

  RB(g) := Px∼ 1
2 (S+T )[ ∃ x′ ∈ B(x), s.t. g(x) ≠ g(x′)].

transformations B(x) ⊂ X, and use the following consistency regularization:
• We expect the predictions to be stable under a suitable set of input

Algorithm



Assumption: Expansion

• The expansion property proposed in [1], some geometric regularity on  
w.r.t. , is needed for local consistency regularization to propagate globally.


• Define the neighborhood set , and for a set 
 define .


• Definition of -multiplicative expansion: For , , any , any 
 with , we have .

Si ∪ Ti
B

N(x) := {x′ |B(x) ∩ B(x′ ) ≠ ∅}
A ⊂ X N(A) := ∪x∈A N(x)

(a, c) a ∈ (0,1) c > 1 i
A ∈ Si ∪ Ti P 1

2 (S+T)[A] ≤ a P 1
2 (Si+Ti)[N(A)] ≥ min(cP 1

2 (Si+Ti)[A],1)

[1] Wei, C., Shen, K., Chen, Y., and Ma, T. (2021). Theoretical analysis of self-training with deep 
networks on unlabeled data.



Upper-Bounding the loss on Target

• Main theorem: Guarantee on the target error .


• Based on -multiplicative expansion, we have


                                           .


• Remark: The accuracy of  can actually improve upon the accuracy on , 
suppose  is small.

ϵT(g) = Px∼T[g(x) ≠ g*(x)]

(1/2,c)

ϵT(g) ≤ max ( c + 1
c − 1

,3) 8rμ
γ

g gtc
μ



Proof Sketch
• The robust set is .


• The majority class on the i-th component is 

. 


• And we let  be the minority set. 


• Upper bound the minority set:  .


• Define the inconsistent components

.


• Separately bound   .

RS(g) := {x |g(x) = g(x′ ), ∀x′ ∈ B(x)}

yMaj
i := argmaxk∈[K] P 1

2 (Si+Ti)[RS(g) ∩ {x |g(x) = k}]

M̃ := ∪m
i=1 (Si ∪ Ti) ∩ {x |g(x) ≠ yMaj

i }

P 1
2 (S+T)[M̃] ≤ max((c + 1)/(c − 1),3)μ

I = {i ∈ [m] |Px∼Si
[g(x) ≠ gtc(x)] > Px∼Si

[gtc(x) ≠ yi] + γ/2}

ϵT(g) = Σi∈Iϵi
T(g) + Σi∈[m]\Iϵi

T(g) ≤ 8rP 1
2 (S+T)[M̃]/γ



Finite Sample Bound

• Finite-sample bounds can be obtained by off-the-shelf generalization bounds. 


• For a neural network   and its induced classifier , we use the all-
layer margin  from [2] and the robust margin 


. 


• The algorithm now becomes


                         

f : X → RK g
m( f, x, y)

mB( f, x) = min
x′ ∈B(x)

m( f, x′ , argmaxi f(x)i)

g = argming:X→Y,g∈G Px∼ ̂S[m( f, x, gtc(x)) ≤ t]
 s.t. Px∼ 1

2 ( ̂S+ ̂T)[mB( f, x) ≤ t] ≤ μ .

[2] Wei, C. and Ma, T. (2019). Improved sample complexities for deep networks and robust 
classification via an all-layer margin.



Finite Sample Bound
• Based on -multiplicative expansion, we have


                                           .


 where


    

(1/2,c)

ϵT(g) ≤
8r
γ (max ( c + 1

c − 1
,3) ̂μ + Δ)

Δ = Õ ((Px∼ ̂S[m( f*, x, gtc(x)) ≤ t] − L ̂S
01(g*, gtc)) +

∑i q∥Wi∥F

t n
+

log(1/δ) + p log n
n )

̂μ = μ + Õ (
∑i q∥Wi∥F

t n
+

log(1/δ) + p log n
n ) .



Generalized Subpopulation Shift
• The previous framework can be applied to a much more general setting: As 

long as we perform consistency regularization on an unlabeled dataset that 
covers both source and target, we should be able to propagate labels.


• The distributions are of the following structure: , 
, , , and  for .1


•  is on  and expansion is assumed to hold on  now.


• Defining “coverage”: There exists a  s.t. for any , we have

     and .

supp(S) = ∪m
i=1 Si

supp(T) = ∪m
i=1 Ti supp(U) = ∪m

i=1 Ui Si ∪ Ti ⊂ Ui Ui ∩ Uj = ∅ i ≠ j

RB(g) U {Ui}m
i=1

κ ≥ 1 A ⊂ X
PSi

(A) ≤ κPUi
(A) PTi

(A) ≤ κPUi
(A)

1 Where the ground-truth labels on  is consistent.Ui



• The previous results hold on a multitude of setting, with an extra multiplicative 
constant  in the final bound.κ

(a) Unsupervised 
domain adaptation

(b) Semi-supervised learning 
or self-supervised denoising (c) Domain expansion (d) Domain extrapolation (e) Multi-source domain adaptation 

or domain generalization

Generalized Subpopulation Shift



Experiments: Subpopulation Shift Dataset
• ENTITY-30 task from BREEDS tasks. (Subset of ImageNet, where classes 

don’t shift but subclasses shifts.)


• We use FixMatch, an existing consistency regularization method. We also 
leverage SwAV, an existing unsupervised representation learned from 
ImageNet, where there can be a better structure of subpopulation shift. We 
compare with popular distribution matching methods like DANN and MDD.



Experiments: Classic DA Dataset
• Office-31 and Office-home.


• We add consistency regularization (FixMatch) to MDD, and observed 
improvement to the distribution matching method.



Takeaway Message

Consistency-based methods (e.g. semi-supervised learning 
methods like FixMatch) can help domain adaptation, 
especially in the presence of subpopulation shift!



https://tianle.website/
Thanks!


