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Outline

® A step towards understanding optimization of deep learning

® Convergence of a harder problem than classic supervised
learning

® Algorithmic insights from the understanding



Supervised learning Deep learning
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Optimization of Deep Learning
Theory:

® Highly non-convex optimization problem

® Hard to get global convergence result
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Practice:
® Optimizing quite well

® Can be optimized to fit even random labels



How to understand optimization
of deep learning (neural networks)?

o o |
— I ALCHEMY ) |

A Primer of




One attempt: through the lens of
overparameterization

# parameters > # data




average loss

Effects of overparameterization:
Strong expressivity -> Easy to optimize

[Zhang et al. 2017]
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® Overparameterized networks
can approximate any function
(In some certain sense).

® Overparameterized networks
can be trained to overfit non-
sense data.



Insights from overparameterization

® Overparameterized networks are very expressive.

® Maybe a small change to the parameterw is
suffice to make the model fit the data.

® Only need to consider the optimization problem
within a neighbor of the initial parameter wy.




Inspired by these insights, we have ...

® Overparameterized networks provably converge to zero
training loss using gradient descent. [Jacot et al., 2018, Du
et al., 2018, Allen-Zhu et al., 2018, Zou et al., 2018]

® Key idea:

® Overparameterized networks are approximately linear w.r.t. the
parameters in a neighbor of initialization (in the parameter space).

® There is a global optima inside this neighbor.



Neural Taylor Expansion

Let f(w, x) denote the network with parameter w € R™ and input x € RY. We assume the
output of f(w, x) is a scalar.
Neural Taylor Expansion/ Feature Map of Neural Tangent Kernel (NTK)

Within a neighbor of the initialization wy, V, f(w, x) = V,,f(wp, x). Then we have the
approximate neural Taylor expansion [Chizat and Bach, 2018]:

f(w,x)~ f(wy,x)+ (w—wpy) -Vuf(wy,x),
N’ N LT D

bias term linear parameters  feature of x

where V, f(w, x) is the gradient of f(w,x) w.r.t. w.



Proof pipeline of the global convergence

® Overparameterized networks are approximately linear w.r.t. the parameters
in a neighbor of initialization (in parameter space).

= Gradient descent is applied within a "not so nonconvex" regime.
= Gradient descent can approximately find the optima within this regime.
® There is a global optima inside this neighbor.

= The optima reached by gradient descent is an (approximate) global optima :)



What's next?

® Global convergence of harder optimization problem,

® Better convergence rate for supervised learning.



Part I: harder optimization problem

® Appearance of adversary

Deep learning models are vulnerable to adversarial attacks.

(a) Schoolbus (b) Perturbation (c) Ostrich
Figure: Szegedy et al. (2014)



Adversarial attack

® Given: model f (w, x), input data x,

® Adversarial attack find A(w, x) € B(x) where B(x) is the
allowed perturbation set at x, e.qg. £, or £, ball centered at x.



Algorithm to obtain robust model
(w.r.t. adversarial attack)

® Adversarial training:
n
min  £(f (w, AW, x), 70
i=1

that is, the loss evaluated at the perturbed data generated by A.




Convergence of adversarial training in
overparameterized networks

® Can be non-smooth.

® Can be minmax optimization. (If the adversary can find
the maxima within the perturbation set)




Our result: adversarial training can converge to
global optima in overparameterized networks

® Still consider the optimization process in the neighbor of
the initial parameter wy.

® Main obstacles:

® The optimization problem cannot be approximated by linear
regression anymore,

® The existence of optima of this harder problem is unclear.



We show that

® The optimization within the neighbor of initial weights can be
approximated by a convex optimization problem. Analysis of
this problem can guarantee to find an optimum in the neighbor;

® There existence a good optimum with near zero loss in the
neighborhood, which is proved by random feature techniques.




Part II: Better convergence rate

® Prior work: gradient descent have linear convergence rate on
overparameterized networks.

Theorem 4.1 (Convergence Rate of Gradient Descent). Under the same assumptions as in Theo-
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rem 3.2, if we set the number of hidden nodes m = £ (”—) we i.i.d. initialize w, ~ N(0,I),
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a, ~ unif [{—1, 1}] for r € [m], and we set the step size n = O (f‘—lﬁ_}) then with probability at least
1 — 0 over the random initialization we have for k = 0,1,2, . ..

k
A
k) - 315 < (1- 52) ) - vI3.

[Du et al. 2018]



Can we design algorithm that is provable faster?

Key insights:

® The optimization of overparameterized can be approximated by
a neural tangent kernel regression problem (linear problem) in
the neighbor of initial parameter.

® This approximate problem can be solved by explicit formula
other than applying gradient descent.




Recall
Neural Taylor Expansion

Let f(w, x) denote the network with parameter w € R™ and input x € RY. We assume the
output of f(w, x) is a scalar.

Neural Taylor Expansion/ Feature Map of Neural Tangent Kernel (NTK)

Within a neighbor of the initialization wy, V, f(w, x) = V,,f(wp, x). Then we have the
approximate neural Taylor expansion [Chizat and Bach, 2018]:

f(w,x)~ f(wy,x)+ (w—wpy) -Vuf(wy,x),
N’ N

bias term linear parameters  feature of x

where V, f(w, x) is the gradient of f(w,x) w.r.t. w.



Linear approximation at w;

*fw,x) = f(wg, x) + (W —wy) -V, f(wg, x)

Directly solve f (w41, x;) = y;,
We get

weer = we — (7)) JE(Fwe) — 9),

where J; is the Jacobian matrix, f(wy) = (f(we, x1), ...,f(wt,xn))T




Quadratic convergence rate

| —1
® Usingupdaterule wyy 1 = wy — (]tT t) JE (f(we) — ),

® We prove that the optimization of overparameterized
network has a quadratic convergence rate.



Bonus

~1

® The update rule w;p; = wy — (J{J:) J¢ (f (W) — ¥) only involves
the matrix /' J; whose size is #data times #data. (Comparing to
classic Newton-type method that use (approximate) Hessian)

® This matrix is smaller than Hessian in overparameterized setting.

® Using mini-batch scheme can further reduce the size of matrix in
the update.




Empirical results

We conduct experiments on two regression datasets, AFAD-LITE task (human age prediction by
image) and RSNA Bone Age regression.
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Figure: Training curves of GGN and SGD on two regression tasks.
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Thank you!

® Info: https://tianle.website/

® Contact: tianle.cai@princeton.edu
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