Towards Understanding Optimization of Deep Learning

Tianle Cai

Peking University -> Princeton University

Joint work with: Siyu Chen, Ruiqi Gao, Di He, Cho-jui Hsieh, Jikai Hou, Jason Lee, Haochuan Li, Dong Wang, Liwei Wang, Zhihua Zhang

Outline

- A step towards understanding optimization of deep learning
- Convergence of a harder problem than classic supervised learning
- Algorithmic insights from the understanding

Supervised learning

- Sample: $\{x_i\}_{i=1}^n$,
- Label: $\{y_i\}_{i=1}^n$
- Model: f(w, x) where w denotes the parameter,
- Loss: $\ell(f(w, x), y)$,
- ERM: $\min_{w} \sum_{i=1}^{n} \ell(f(w, x_i), y_i).$

Remark: Optimization is performed by optimizer such as gradient descent

Deep learning

• Use overparameterized deep neural network as model.

Optimization of Deep Learning

Theory:

Highly non-convex optimization problem

Hard to get global convergence result

Practice:

- Optimizing quite well
- Can be optimized to fit even random labels

How to understand optimization of deep learning (neural networks)?

One attempt: through the lens of overparameterization

parameters ≫ # data

Effects of overparameterization: Strong expressivity -> Easy to optimize

- Overparameterized networks can approximate any function (in some certain sense).
- Overparameterized networks can be trained to overfit nonsense data.

Insights from overparameterization

- Overparameterized networks are very expressive.
- Maybe a small change to the parameter w is suffice to make the model fit the data.
- Only need to consider the optimization problem within a neighbor of the initial parameter w_0 .

Inspired by these insights, we have ...

- Overparameterized networks provably converge to zero training loss using gradient descent. [Jacot et al., 2018, Du et al., 2018, Allen-Zhu et al., 2018, Zou et al., 2018]
- Key idea:
 - Overparameterized networks are approximately linear w.r.t. the parameters in a neighbor of initialization (in the parameter space).
 - There is a global optima inside this neighbor.

Neural Taylor Expansion

Let f(w, x) denote the network with parameter $w \in \mathbb{R}^m$ and input $x \in \mathbb{R}^d$. We assume the output of f(w, x) is a scalar.

Neural Taylor Expansion/ Feature Map of Neural Tangent Kernel (NTK) Within a neighbor of the initialization w_0 , $\nabla_w f(w, x) \approx \nabla_w f(w_0, x)$. Then we have the approximate neural Taylor expansion [Chizat and Bach, 2018]:

$$f(w, x) \approx \underbrace{f(w_0, x)}_{\text{bias term}} + \underbrace{(w - w_0)}_{\text{linear parameters}} \cdot \underbrace{\nabla_w f(w_0, x)}_{\text{feature of } x},$$

where $\nabla_w f(w, x)$ is the gradient of f(w, x) w.r.t. w.

Proof pipeline of the global convergence

- Overparameterized networks are approximately linear w.r.t. the parameters in a neighbor of initialization (in parameter space).
- \Rightarrow Gradient descent is applied within a "not so nonconvex" regime.
- \Rightarrow Gradient descent can approximately find the optima within this regime.
- There is a global optima inside this neighbor.
- ⇒ The optima reached by gradient descent is an (approximate) global optima :)

What's next?

Global convergence of harder optimization problem,
Better convergence rate for supervised learning.

Part I: harder optimization problem

Appearance of adversary

Deep learning models are vulnerable to adversarial attacks.

 $+0.1 \times$

(a) Schoolbus

(c) Ostrich

Figure: Szegedy et al. (2014)

(b)

Perturbation

Adversarial attack

- Given: model f(w, x), input data x,
- Adversarial attack find $A(w, x) \in B(x)$ where B(x) is the allowed perturbation set at x, e.g. ℓ_2 or ℓ_{∞} ball centered at x.

Algorithm to obtain robust model (w.r.t. adversarial attack)

• Adversarial training:

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \ell(f(w, A(w, x_i), y_i))$$

that is, the loss evaluated at the perturbed data generated by A.

Convergence of adversarial training in overparameterized networks

- Can be non-smooth.
- Can be minmax optimization. (If the adversary can find the maxima within the perturbation set)

Our result: adversarial training can converge to global optima in overparameterized networks

- Still consider the optimization process in the neighbor of the initial parameter w₀.
- Main obstacles:
 - The optimization problem cannot be approximated by linear regression anymore,
 - The existence of optima of this harder problem is unclear.

We show that

- The optimization within the neighbor of initial weights can be approximated by a convex optimization problem. Analysis of this problem can guarantee to find an optimum in the neighbor;
- There existence a good optimum with near zero loss in the neighborhood, which is proved by random feature techniques.

Part II: Better convergence rate

Prior work: gradient descent have linear convergence rate on overparameterized networks.

Theorem 4.1 (Convergence Rate of Gradient Descent). Under the same assumptions as in Theorem 3.2, if we set the number of hidden nodes $m = \Omega\left(\frac{n^6}{\lambda_0^4\delta^3}\right)$, we i.i.d. initialize $\mathbf{w}_r \sim N(\mathbf{0}, \mathbf{I})$, $a_r \sim \text{unif } [\{-1, 1\}]$ for $r \in [m]$, and we set the step size $\eta = O\left(\frac{\lambda_0}{n^2}\right)$ then with probability at least $1 - \delta$ over the random initialization we have for k = 0, 1, 2, ...

$$\|\mathbf{u}(k) - \mathbf{y}\|_{2}^{2} \le \left(1 - \frac{\eta \lambda_{0}}{2}\right)^{k} \|\mathbf{u}(0) - \mathbf{y}\|_{2}^{2}.$$

[Du et al. 2018]

Can we design algorithm that is provable faster?

Key insights:

- The optimization of overparameterized can be approximated by a neural tangent kernel regression problem (linear problem) in the neighbor of initial parameter.
- This approximate problem can be solved by explicit formula other than applying gradient descent.

Recall Neural Taylor Expansion

Let f(w, x) denote the network with parameter $w \in \mathbb{R}^m$ and input $x \in \mathbb{R}^d$. We assume the output of f(w, x) is a scalar.

Neural Taylor Expansion/ Feature Map of Neural Tangent Kernel (NTK) Within a neighbor of the initialization w_0 , $\nabla_w f(w, x) \approx \nabla_w f(w_0, x)$. Then we have the approximate neural Taylor expansion [Chizat and Bach, 2018]:

$$f(w, x) \approx \underbrace{f(w_0, x)}_{\text{bias term}} + \underbrace{(w - w_0)}_{\text{linear parameters}} \cdot \underbrace{\nabla_w f(w_0, x)}_{\text{feature of } x},$$

where $\nabla_w f(w, x)$ is the gradient of f(w, x) w.r.t. w.

Linear approximation at w_t

•
$$f(w, x) \approx f(w_t, x) + (w - w_t) \cdot \nabla_w f(w_t, x)$$

Directly solve $f(w_{t+1}, x_i) = y_i$,
We get

$$w_{t+1} = w_t - (J_t^{\mathsf{T}} J_t)^{-1} J_t^{\mathsf{T}} (f(w_t) - y),$$

where J_t is the Jacobian matrix, $f(w_t) = (f(w_t, x_1), \dots, f(w_t, x_n))^{\mathsf{T}}$
and $y = (y_1, \dots, y_n)^{\mathsf{T}}$

Quadratic convergence rate

- Using update rule $w_{t+1} = w_t (J_t^{\mathsf{T}} J_t)^{-1} J_t^{\mathsf{T}} (f(w_t) y),$
- We prove that the optimization of overparameterized network has a quadratic convergence rate.

Bonus

- The update rule $w_{t+1} = w_t (J_t^{\mathsf{T}}J_t)^{-1}J_t^{\mathsf{T}}(f(w_t) y)$ only involves the matrix $J_t^{\mathsf{T}}J_t$ whose size is #data times #data. (Comparing to classic Newton-type method that use (approximate) Hessian)
- This matrix is smaller than Hessian in overparameterized setting.
- Using mini-batch scheme can further reduce the size of matrix in the update.

Empirical results

We conduct experiments on two regression datasets, AFAD-LITE task (human age prediction by image) and RSNA Bone Age regression.

(a) Loss-time curve on AFAD-LITE (b) Loss-epoch curve on AFAD-LITE

Figure: Training curves of GGN and SGD on two regression tasks.

Empirical results

(a) Loss-time curve on RSNA Bone (b) Loss-epoch curve on RSNA Bone Age Age

Figure: Training curves of GGN and SGD on two regression tasks.

Thank you!

Info: <u>https://tianle.website/</u>

Contact: tianle.cai@princeton.edu